8-bit Proprietary Microcontroller CMOS
 F²MC-8L MB89800 2 Series

MB89803/805/P808/PV800

■ DESCRIPTION

MB89800 series is a line of single-chip microcontrollers using the F${ }^{2}$ MC-8L* CPU core which can operate at low voltage but at high speed. In addition to an LCD controller/driver allowing 240 -pixel display the microcontrollers contain a variety of peripheral functions such as timers, a UART, a serial interface, and an external interrupt. The configuration of the MB89800 series is therefore best suited to control of LCD display panels.
*: F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum execution time: $0.4 \mu \mathrm{~s} / 10 \mathrm{MHz}(\mathrm{Vcc}=+5.0 \mathrm{~V})$
- F^{2} MC-8L family CPU core
Instruction set optimized for controllers $\left\{\begin{array}{l}\text { Multiplication and division instructions } \\ 16 \text {-bit arithmetic operations } \\ \text { Test and branch instructions } \\ \text { Bit manipulation instructions, etc. }\end{array}\right.$
(Continued)

PACKAGES

MB89800 Series

(Continued)

- LCD controller/driver

Max 70 segments/4 commons
Divided resistor for LCD power supply

- Three types of timers 8 -bit PWM timer (also usable as a reload timer)
8 -bit pulse width count timer (also usable as a reload timer)
20-bit time-base counter
- Two serial interfaces

8 -bit synchronous serial interface (Switchable transfer direction allows communication with various equipment.)
UART (5-, 7-, 8-bit transfer capable)

- External interrupt: 2 channels

Capable of wake-up from low-power consumption modes (with an edge detection function)

- Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption.)
Sleep mode (The CPU stops to reduce the current consumption to approx. $1 / 3$ of normal.)

MB89800 Series

PRODUCT LINEUP

Parameter	MB89803	MB89805	MB89P808	MB89PV800
Classification	Mass production product (mask ROM products)		One-time PROM product	Piggyback/evaluation product for evaluation and development
ROM size	$8 \mathrm{~K} \times 8$ bits (internal mask ROM)	$16 \mathrm{~K} \times 8$ bits (internal mask ROM)	$48 \mathrm{~K} \times 8$ bits (internal PROM, programming with general-purpose EPROM programmer)	$48 \mathrm{~K} \times 8$ bits (external ROM)
RAM size	256×8 bits	512×8 bits	$2 \mathrm{~K} \times 8$ bits	
CPU functions	Number of instructions $: 136$ instructions Instruction bit length $: 8$ bits Instruction length $: 1$ byte to 3 bytes Data bit length $: 1,8,16$ bit length Minimum execution time $: 0.4 \mu \mathrm{~s} / 10 \mathrm{MHz}\left(\mathrm{V}_{c c}=5.0 \mathrm{~V}\right)$ Interrupt processing time $: 3.6 \mu \mathrm{~s} / 10 \mathrm{MHz}(\mathrm{Vcc}=5.0 \mathrm{~V})$			
Ports	I/O ports (N-ch open-drain) $: 16$ (All also serve as segment pins.) ${ }^{* 1}$ I/O ports (N-ch open-drain) $: 6$ I/O ports (CMOS) $: 6$ (5 ports also serve as peripheral I/O.) Input ports $: 4(1$ port also serves as an external interrupt input.) \quad Total $: 32$ (Max)			
PWM timer	8-bit reload timer operation (toggled output capable)8-bit resolution PWM operationOperating clock (pulse width count timer output, $0.4 \mu \mathrm{~s}, 6.4 \mu \mathrm{~s}, 25.6 \mu \mathrm{~s} / 10 \mathrm{MHz}$)			
Pulse width count timer	8-bit reload timer operation8-bit pulse width count operation(continuous measurement capable, "H" width, "L" width, or single-cycle measurement capable)Operating clock($0.4 \mu \mathrm{~s}, 1.6 \mu \mathrm{~s}, 12.8 \mu \mathrm{~s} / 10 \mathrm{MHz}$)			
Serial I/O 8 bits	8-bit lengthOne clock selectable from four transfer clocks($0.8 \mu \mathrm{~s}, 3.2 \mu \mathrm{~s}, 12.8 \mu \mathrm{~s} / 10 \mathrm{MHz}$)LSB first/MSB first selectability			
UART	5-, 7-, 8- bit transfer capable, built-in baud-rate generator (Max 156250/10 MHz)			
LCD controller/ driver	Common output: 4Segment output: 70 (Max)Operating mode: $1 / 2$ bias $\cdot 1 / 2$ duty, $1 / 3$ bias $\cdot 1 / 3$ duty, $1 / 3$ bias $\cdot 1 / 4$ dutyLCD display RAM size: 70×4 bitsDividing resistor for LCD driving: Built-in(An external resistor selectable)			
External interrupt	2 channels (edge selectable) (1 channel also serves as a pulse width count timer input)			
Standby mode	Sleep mode, stop mode			
Process	CMOS			
Operating voltage*2	2.2 V to 6.0 V		2.7 to 6.0 V	
EPROM for use				MBM27C512-20TV (LCC package)

*1: The function is selected by the mask option.
*2 : Varies with conditions such as the operating frequency. (See "IELECTRICAL CHARACTERISTICS".)

MB89800 Series

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89803	MB89805	MB89P808	MB89PV800
FPT-100P-M05	\bigcirc	\bigcirc	\bigcirc	\times
FPT-100P-M06	\bigcirc	\bigcirc	\bigcirc	\times
MQP-100C-P01	\times	\times	\times	\bigcirc

:Available \times :Not available
Note : For more information about each package, see " \quad PACKAGE DIMENSIONS".

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, it is necessary to confirm its differences from the product that will actually be used.
Take particular care on the following points:

- MB89803 register bank addresses upper than 0180H can not be used.
- The stack area, etc., is set at the upper limit of the RAM.

2. Current Consumption

- In the case of the MB89PV800, add the current consumed by the EPROM which is connected to the top socket.
- When operating at low speed, the current consumption in the one-time PROM or EPROM model is greater than on the mask ROM models. However, the current consumption in sleep/stop modes is the same. (For more information, see "■ELECTRICAL CHARACTERISTICS".)

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product. Before using options check "四MASK OPTIONS".
Note that the options are fixed especially in MB89PV800 and MB89P808.

MB89800 Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-100P-M05)

MB89800 Series

```
- Pin assignment on package top (MB89PV800 only)
```

Pin no.	Pin name						
101	N.C.	109	A2	117	N.C.	125	$\overline{\mathrm{OE}}$
102	Vpp	110	A1	118	O4	126	N.C.
103	A12	111	A0	119	O5	127	A11
104	A7	112	N.C.	120	O6	128	A9
105	A6	113	O1	121	O7	129	A8
106	A5	114	O2	122	O8	130	A13
107	A4	115	O3	123	$\overline{\text { CE }}$	131	A14
108	A3	116	Vss 3	124	A10	132	Vcc

N.C.: Internally connected. Do not use.

MB89800 Series

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
LQFP*1	MQFP/ QFP*2			
54	57	X0	A	Clock crystal oscillator pins
55	58	X1		
51	54	MOD0	B	Operating mode selection pin. Connect directly to Vss.
52	55	MOD1		
53	56	$\overline{\mathrm{RST}}$	C	This pin is an N-ch open-drain type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source (optional function). The internal circuit is initialized by the input of " L ".
85 to 78	88 to 81	$\begin{aligned} & \text { P00/SEG54 to } \\ & \text { P07/SEG61 } \end{aligned}$	D	General-purpose N-ch open-drain I/O ports. Also serve as an LCD controller/driver segment output. The port and segment output are switched by mask option in 8-bit unit.
77 to 70	80 to 73	P10/SEG62 to P17/SEG69	D	General-purpose N-ch open-drain I/O ports. Also serve as an LCD controller/driver segment output. The port and segment output are switched by mask option in 4 to 1-bit unit.
69 to 64	72 to 67	P20 to P25	F	General-purpose N-ch open-drain I/O ports. A pull-up resistor option is provided.
63	66	P30/INT0	1	General-purpose input port. The input is CMOS input. Also serves as an external interrupt input (INTO), in this case, the input is hysteresis input. A pull-up resistor option is provided.
62 to 60	65 to 63	P31 to P33	H	General-purpose input ports. These pins are a CMOS input type. A pull-up resistor option is provided.
59	62	P40	E	General-purpose I/O port. A pull-up resistor option is provided.
58	61	P41/PWM	E	General-purpose I/O port. A pull-up resistor option is provided. Also serves as PWM timer toggle output (PWM).
57	60	P42/PWC/ INT1	E	General-purpose I/O port. A pull-up resistor option is provided. Also serves as pulse width count timer input (PWC) and an external interrupt input (INT1). The PWC and INT1 input is hysteresis input.
50	53	P43/SI	E	General-purpose I/O port. A pull-up resistor option is provided. Also serves as serial I/O and a UART data input (SI). The SI input is hysteresis input.
49	52	P44/SO	E	General-purpose I/O port. A pull-up resistor option is provided. Also serves as a serial I/O and a UART data output (SO).

*1: FPT-100P-M05
*2 : FPT-100P-M06/MQP-100C-P01
(Continued)

MB89800 Series

(Continued)

Pin no.		Pin name	Circuit type	Function
LQFP*1	MQFP/ QFP*2			
48	51	P45/SCK	E	General-purpose I/O port. A pull-up resistor option is provided. Also serves as a serial I/O and a UART clock I/O (SCK). The SCK input is hysteresis input.
$\begin{gathered} 39 \text { to } 1, \\ 100 \text { to } 86 \end{gathered}$	$\begin{gathered} 42 \text { to } 1, \\ 100 \text { to } 89 \end{gathered}$	$\begin{aligned} & \text { SEGO to } \\ & \text { SEG53 } \end{aligned}$	G	LCD controller/driver segment output pins
43 to 40	46 to 43	$\begin{aligned} & \text { COM0 to } \\ & \text { COM3 } \end{aligned}$	G	LCD controller/driver common output pins
46 to 44	49 to 47	V3 to V1	-	LCD driving power supply pins
47	50	V co	-	Power supply pin
56	59	Vss	-	Power supply (GND) pin

*1 : FPT-100P-M05
*2 : FPT-100P-M06/MQP-100C-P01

- External EPROM pins (MB89PV800 only)

Pin no.	Pin name	I/O	Function
102	Vpp	O	" H " level output pin
$\begin{aligned} & \hline 103 \\ & 104 \\ & 105 \\ & 106 \\ & 107 \\ & 108 \\ & 109 \\ & 110 \\ & 111 \end{aligned}$	$\begin{aligned} & \hline \text { A12 } \\ & \text { A7 } \\ & \text { A6 } \\ & \text { A5 } \\ & \text { A4 } \\ & \text { A3 } \\ & \text { A2 } \\ & \text { A1 } \\ & \text { A0 } \end{aligned}$	O	Address output pins
$\begin{aligned} & \hline 113 \\ & 114 \\ & 115 \end{aligned}$	$\begin{aligned} & \text { O1 } \\ & \text { O2 } \\ & \text { O3 } \end{aligned}$	1	Data input pins
116	Vss	O	Power supply (GND) pin
$\begin{aligned} & \hline 118 \\ & 119 \\ & 120 \\ & 121 \\ & 122 \end{aligned}$	$\begin{aligned} & \mathrm{O} 4 \\ & 05 \\ & 06 \\ & 07 \\ & 08 \\ & 08 \end{aligned}$	1	Data input pins
123	CE	O	ROM chip enable pin Outputs "H" during standby.
124	A10	O	Address output pin
125	OE	O	ROM output enable pin Outputs "L" at all times.
$\begin{aligned} & \hline 127 \\ & 128 \\ & 129 \end{aligned}$	$\begin{aligned} & \text { A11 } \\ & \text { A9 } \\ & \text { A8 } \end{aligned}$	O	Address output pins
130	A13	O	
131	A14	0	
132	V cc	O	EPROM power supply pin
$\begin{aligned} & \hline 101 \\ & 112 \\ & 117 \\ & 126 \end{aligned}$	N.C.	-	Internally connected pins Be sure to leave them open.

MB89800 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Crystal oscillator circuit - At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
B	$\square \longrightarrow-$	- CMOS input
C		- At an output pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ - Hysteresis input
D		- N-ch open-drain output - CMOS input - Segment output optional
E		- CMOS output - CMOS input - Hysteresis input (peripheral input) - Pull-up resistor optional

(Continued)

MB89800 Series

(Continued)

Type	Circuit	Remarks
F		- Nch open-drain output - CMOS input - Pull-up resistor optional
G		- LCDC output
H		- CMOS input - Pull-up resistor optional
I		- CMOS input (port), Hysterisis input (interrupt) - Pull-up resistor optional

MB89800 Series

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "DELECTRICAL CHARACTERISTICS" is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

4. Power Supply Voltage Fluctuations

Although $V_{c c}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard $V_{c c}$ value at the commercial frequency (50 Hz to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.
5. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

MB89800 Series

- PROGRAMMING TO THE EPROM ON THE MB89P808

The MB89P808 is an OTPROM (one-time PROM) version for the MB89800 series.

1. Features

- 48-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C1001A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below.

MB89800 Series

3. Programming to the EPROM

In EPROM mode, the MB89P808 functions equivalent to the MBM27C1001A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

- Programming procedure
(1) Set the EPROM programmer to the MBM27C1001A.
(2) Load option data into addresses 4000 H to FFFFH of the EPROM programmer.
(3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.
For this reason, a programming yield of 100% cannot be assured at all times.
6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-100P-M05	ROM-100SQF-32DP-8LA3
FPT-100P-M06	ROM-100QF-32DP-8LA2

Inquiry: Sunhayato Co., Ltd.: TEL +81-3-3984-7791
Note : With some EPROM programmers, stability of programming performance is enhanced by placing an $0.1 \mu \mathrm{~F}$ capacitor between the $\mathrm{V}_{\text {Pp }}$ and $\mathrm{V}_{\text {ss }}$ pins or the V_{cc} and V_{ss} pins.

MB89800 Series

PROGRAMMING TO THE EPROM WITH PIGGY-BACK/EVALUATION CHIPS

1. EPROM for Use

MBM27C512-20TV
2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato
Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG

Inquiry: Sunhayato Co., Ltd.: TEL +81-3-3984-7791

3. Memory Space

Memory space in each mode, such as 48 Kbyte PROM is diagrammed below.

4. Programming to the EPROM
(1) Set the EPROM programmer to the MBM27C512.
(2) Load program data into the EPROM programmer at 4000н to FFFFн .
(3) Program to 4000 to FFFFH with the EPROM programmer.

MB89800 Series

BLOCK DIAGRAM

MB89800 Series

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89800 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89800 series is structured as illustrated below.

- Memory space

	MB89803		MB89805		MB89P808		MB89PV800
0000н	1/O	0000н \quad -		0000н	1/O	0000 ${ }^{\text {H}}$	I/O
0080н	RAM	0080н	RAM	0080н	RAM	0080 ${ }_{\text {H }}$	RAM
0100н	Register	0100 ${ }^{\text {H}}$	Register	0100H	Register	0100 ${ }^{\text {H}}$	Register
0180H		$\begin{aligned} & 0200 \mathrm{H} \\ & 0280 \mathrm{H} \end{aligned}$	-----	0200н		0200 ${ }^{\text {H}}$	
				0880н		0880 ${ }^{\text {H }}$	
	Unused		Unused		Unused		Unused
				4000 H		4000 H	
		COOOH					
			ROM		Programming ROM		Programming ROM
	ROM						
FFFFH		FFFFH		FFFFH		$\mathrm{FFFFF}_{\mathrm{H}}$	

MB89800 Series

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:
Program counter (PC) : A 16-bit register for indicating instruction storage positions
Accumulator (A) : A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T) : A 16-bit register which performs arithmetic operations with the accumulator. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Index register (IX) : A 16-bit register for index modification
Extra pointer (EP) : A 16-bit pointer for indicating a memory address
Stack pointer (SP) : A 16-bit register for indicating a stack area
Program status (PS) : A 16-bit register for storing a register pointer and a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

- Structure of the Program Status Register

MB89800 Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

- Rule for conversion of actual addresses of the general-purpose register area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag : Set to 1 when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag : Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 .
Set to 0 when reset.
IL1, 0 : Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	Low $=$ no interrupt
1	1	3	

N-flag : Set to 1 if the highest bit is set to 1 as the result of an arithmetic operation. Cleared to 0 when the bit is set to 0 .

Z-flag : Set to 1 when an arithmetic operation results in 0 . Cleared to 0 otherwise.
V-flag : Set to 1 if the complement on 2 overflows as a result of an arithmetic operation. Cleared to 0 if the overflow does not occur.
C-flag : Set to 1 when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to 0 otherwise. Set to the shift-out value in the case of a shift instruction.

MB89800 Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89803 (RAM 256×8 bits). The bank currently in use is indicated by the register bank pointer (RP).

Note : The number of register banks that can be used varies with the RAM size.
MB89803 0100h to 017Fh 16 banks
MB89805 0100h to 01FFh 32 banks
MB89P808 0100h to 01FFh 32 banks
MB89PV800 0100h to 01FFh 32 banks

- Register bank configuration

This address $=0100 \mathrm{H}+8 \times(R P)$

MB89800 Series

I/O MAP

Address	Read/write	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н			Vacancy
02н	(R/W)	PDR1	Port 1 data register
03н			Vacancy
04н	(R/W)	PDR2	Port 2 data register
05н			Vacancy
06н			Vacancy
07н			Vacancy
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog timer control register
ОАн	(R/W)	TBCR	Time-base timer control register
OBн			Vacancy
0 CH	(R)	PDR3	Port 3 data register
0Dн			Vacancy
ОЕн	(R/W)	PDR4	Port 4 data register
$\mathrm{OFH}_{\mathrm{H}}$	(W)	DDR4	Port 4 data direction register
10 н			Vacancy
11н			Vacancy
12н	(R/W)	CNTR	PWM timer control register
13H	(W)	COMR	PWM timer compare register
14 H	(R/W)	PCR1	PWC pulse width control register 1
15 H	(R/W)	PCR2	PWC pulse width control register 2
16н	(R/W)	RLBR	PWC reload buffer register
17 H	(R/W)	NCCR	PWC noise cancellation control register 1
18н			Vacancy
19н			Vacancy
1 AH			Vacancy
1Вн			Vacancy
1 CH	(R/W)	SMR	Serial mode register
1D ${ }_{\text {¢ }}$	(R/W)	SDR	Serial data register
$1 \mathrm{E}_{\mathrm{H}}$			Vacancy
1 FH			Vacancy

(Continued)

MB89800 Series

(Continued)

Address	Read/write	Register name	Register description
2 OH	(R/W)	SMC1	UART serial mode control register 1
21н	(R/W)	SRC	UART serial rate control register
22н	(R/W)	SSD	UART serial status/data register
23H	(R/W)	SIDR/SODR	UART serial data register
24 н	(R/W)	SMC2	UART serial mode control register 2
25 H			Vacancy
26			Vacancy
27 H			Vacancy
28H			Vacancy
29н			Vacancy
2 Ан			Vacancy
2 BH			Vacancy
2 CH			Vacancy
2D			Vacancy
$2 \mathrm{E}_{\mathrm{H}}$			Vacancy
$2 \mathrm{~F}_{\mathrm{H}}$			Vacancy
30 ${ }^{\text {H}}$	(R/W)	EIC1	External interrupt 1 control register 1
31- to 4FH			Vacancy
50н to 72н	(R/W)	VRAM	Display data RAM
79н	(R/W)	LCR1	LCD controller/driver control register
7Ан	(R/W)	SEGR	Segment output selection register
7Вн			Vacancy
$7 \mathrm{C}_{\mathrm{H}}$	(W)	ILR1	Interrupt level setting register 1
7D	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7F			Vacancy

R/W = Available Read and Write
$\mathrm{R}=$ Read only
W = Write only
Note : Do not use vacancies.

MB89800 Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage	V cc	Vss - 0.3	Vss +7.0	V	
LCD power supply voltage	V_{3}	Vss - 0.3	Vss +7.0	V	V3 to V1 Pin
Input voltage	V_{11}	Vss - 0.3	$\mathrm{V} \mathrm{cc}+0.3$	V	With pull-up resistor of P20 to P25 in selecting. Must not exceed Vss +7.0 V .
	V_{12}	Vss - 0.3	Vss +7.0	V	Without pull-up resistor of P20 to P25 in selecting.
	V_{13}	Vss - 0.3	$V_{3}+0.3$	V	Adapt to P00 to P07 and P10 to P17 in MB89P808 and MB89PV800. Must not exceed Vss +7.0 V .
	V_{14}	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	Other pins. Must not exceed Vss +7.0 V .
Output voltage	Vo1	Vss - 0.3	$\mathrm{V} \mathrm{cc}+0.3$	V	With pull-up resistor of P20 to P25 in selecting. Must not exceed Vss +7.0 V .
	Vo2	Vss - 0.3	Vss +7.0	V	Without pull-up resistor of P20 to P25 in selecting.
	Vо3	Vss - 0.3	$\mathrm{V}_{3}+0.3$	V	Adapt to P00 to P07 and P10 to P17 in MB89P808 and MB89PV800. Must not exceed Vss +7.0 V .
	Vo4	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	Other pins. Must not exceed Vss + 7.0 V.
"L" level output current	loL	-	+ 10	mA	Except power supply pins
"L" level average output current	lolav	-	+4	mA	Average value (operating current×operating duty) , adapt to all pins except for power supply.
Total "L" level output current	Σ Io	-	+40	mA	
"H" level output current	Іон	-	-5	mA	Except power supply pins
" H " level average output current	lohav	-	-2	mA	Average value (operating current×operating duty) , adapt to all pins except for power supply.
Total "H"level output current	Σ Іон	-	- 10	mA	
Power consumption	Pd	-	+ 300	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+ 150	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB89800 Series

2. Recommended Operating Conditions

$$
(\mathrm{Vss}=0.0 \mathrm{~V})
$$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Voc	2.2*	6.0*	V	Normal operation assurance range
		1.5	6.0	V	Retains the RAM state in stop mode
LCD power supply voltage	V_{3}	Vss	6.0	V	V3 pin The optimum value is dependent on the element in use.
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	+ 85	${ }^{\circ} \mathrm{C}$	

*: The minimum operating power supply voltage varies with the operating frequency.
Operation Voltage - Operating frequency

* : The shaded area is assured only for the MB89803/805.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB89800 Series

3. DC Characteristics

Parameter	$\underset{\text { Sym }}{\text { Sol }}$	Pin name	Condition	$\left(\mathrm{Vcc}=\mathrm{V}_{3}=+5.0 \mathrm{~V}, \mathrm{~V}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$				
					Value			Remarks
				Min	Typ	Max		m
"H" level input voltage	V ${ }_{\text {H }}$	P00 to P07, P10 to P17, P20 to P25, P30 to P33, P40 to P45	-	$0.7 \mathrm{Vcc}{ }^{+1}$	-	$\begin{gathered} V_{c c}+ \\ 0.3 \end{gathered}$	V	CMOS input
	Vihs	$\overline{\mathrm{RST}}, \mathrm{MODO}$ to MOD1, INT0, SCK, SI, PWC/ INT1	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	CMOS hysterisis input
"L" level input voltage	VIL	P00 to P07, P10 to P17, P20 to P25, P30 to P33, P40 to P45	-	$\mathrm{V}_{\text {cc }}-0.3$	-	$0.3 \mathrm{Vcc}^{+1}$	V	CMOS input
	Vıs	RST, MODO to MOD1, INT0, SCK, SI, PWC/ INT1	-	Vss - 0.3	-	0.2 Vcc	V	CMOS hysterisis input
Open-drain output pin application voltage	$V_{\text {D1 }}$	P20 to P25	Without pull-up resistor	Vss - 0.3	-	Vss +6.0	V	
	V D 2	P00 to P07, P10 to P17	-	Vss - 0.3	-	Vss +6.0	V	Adapt to MB89803/805
				Vss - 0.3	-	$\mathrm{V}_{3}{ }^{* 1}$	V	Adapt to MB89PV800/ P808
"H"level output voltage	Vон	P40 to P45	$\mathrm{IOH}=-2 \mathrm{~mA}$	2.4	-	-	V	
"L"level output voltage	Volı	P00 to P07, P10 to P17, P20 to P25, P40 to P45	$\mathrm{loL}=1.8 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	$\overline{\mathrm{RST}}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	

(Continued)

MB89800 Series

Parameter	$\begin{array}{\|c} \text { Sym- } \\ \text { bol } \end{array}$	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Input leakage current (Hi-z output leakage current)	lıı	MOD0, MOD1, P30 to P33, P40 to P45	$0.45 \mathrm{~V}<\mathrm{V}_{\mathrm{l}}<\mathrm{V}_{\mathrm{cc}}$ Without pull-up resistor	-	-	± 5	$\mu \mathrm{A}$	
		$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \end{aligned}$	$0.45 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-	-	± 5	$\mu \mathrm{A}$	Adapt to MB89PV800/ P808
	1 LL	P20 to P25	$0.45 \mathrm{~V}<\mathrm{V}_{1}<6 \mathrm{~V}$ Without pull-up resistor	-	-	± 1	$\mu \mathrm{A}$	
		$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17 } \end{aligned}$	$0.45<\mathrm{V}_{1}<6 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$	Adapt to MB89803/805
Pull-up Resistance	Rpull	$\begin{aligned} & \text { P20 to P25, } \\ & \text { P30 to P33, } \\ & \frac{\text { P40 to P45, }}{\text { RST }} \end{aligned}$	$V_{1}=0 \mathrm{~V}$ With pull-up resistor	25	50	100	k Ω	
Common output impedance	Rvcom	COM0 to COM3	V 1 to $\mathrm{V} 3=+5.0 \mathrm{~V}$	-	-	2.5	k Ω	
Segment output impedance	Rvseg	SEG0 to SEG49	V 1 to $\mathrm{V} 3=+5.0 \mathrm{~V}$	-	-	15	k Ω	
LCD divided resistance	Rlcd	-	V3 to Vss	30	60	120	k Ω	
LCD leakage current	ILcDL	V1 to V3, COM0 to COM3, SEG0 to SEG69	-	-	-	± 1	$\mu \mathrm{A}$	
Power supply current ${ }^{\star 2}$	Icc1	V cc	RUN mode $\mathrm{Fc}=5 \mathrm{MHz}$ tinst $=0.8 \mu \mathrm{~s}$	-	4.5	6	mA	Adapt to MB89803/805/ PV800
				-	9	15	mA	Adapt to MB89P808
			RUN mode $\mathrm{Fc}=10 \mathrm{MHz}$ tinst $=0.4 \mu \mathrm{~s}$	-	9	12	mA	Adapt to MB89803/805/ PV800
				-	13	20	mA	Adapt to MB89P808

(Continued)

MB89800 Series

(Continued)

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Condition	= V_{3}	. 0	$=0$	$\mathrm{T}_{\mathrm{A}}=$	$40^{\circ} \mathrm{C}$ to +85
				Value			Unit	Remarks
				Min	Typ	Max		
Power supply current ${ }^{\star 2}$	Icc2	Vcc	RUN mode$\begin{gathered} \mathrm{Fc}=5 \mathrm{MHz} \\ \text { tinst }=12.8 \mu \mathrm{~s} \end{gathered}$	-	0.6	0.9	mA	Adapt to MB89803/805/ PV800
				-	3.5	7	mA	Adapt to MB89P808
			RUN mode $\mathrm{Fc}=10 \mathrm{MHz}$ tinst $=6.4 \mu \mathrm{~s}$	-	1.2	1.8	mA	Adapt to MB89803/805/ PV800
				-	4	8	mA	Adapt to MB89P808
	Iccs1	Vcc	$\begin{aligned} & \text { Sleep mode } \\ & \mathrm{Fc}=5 \mathrm{MHz} \\ & \text { tinst }=0.8 \mu \mathrm{~s} \end{aligned}$	-	1.5	2	mA	
			$\begin{aligned} & \text { Sleep mode } \\ & \mathrm{Fc}=10 \mathrm{MHz} \\ & \text { tinst }=0.4 \mu \mathrm{~s} \end{aligned}$	-	3	4	mA	
	Iccs2	Vcc	$\begin{gathered} \text { Sleep mode } \\ \mathrm{Fc}=5 \mathrm{MHz} \\ \text { tinst }=12.8 \mu \mathrm{~s} \end{gathered}$	-	0.4	0.8	mA	
			$\begin{aligned} & \text { Sleep mode } \\ & \mathrm{Fc}=10 \mathrm{MHz} \\ & \text { tinst }=6.4 \mu \mathrm{~s} \end{aligned}$	-	0.8	1.6	mA	
	Icch	Vcc	Stop mpde$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	0.1	1	$\mu \mathrm{A}$	Adapt to MB89803/805
				-	0.1	10	$\mu \mathrm{A}$	Adapt to MB89P808/ PV800
Input capacitance	Cin	Except Vcc and Vss	-	-	10	-	pF	

*1 : The input voltage to P00 to P07 and P10 to P17 for the MB89P800/PV808 must not exceed the LCD power supply voltage (V3 pin voltage).
*2 : The measurement condition of power supply current is as follows: the external clock, open output pins and the external LCD dividing resistor. In the case of the MB89PV800, the current consumed by the connected EPROM and ICE is not included.

MB89800 Series

4. AC Characteristics

(1) Reset Timing

$$
\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condi- tion	Value		Unit	Remarks
			Min	Max		
$\overline{\mathrm{RST}}$ " L " pulse width	tzzLH	-	48 txcyL	-	ns	

(2) Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
Power supply rising time	tr	-	-	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	-	ms	Due to repeated operation

Note : Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

MB89800 Series

(3) Clock Timing
$\left(\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Sym bol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	Fc	X0, X1		1	-	10	MHz	
Clock cycle time	txCyL			100	-	1000	ns	Crystal or ceramic resonator
Input clock duty ratio*	duty	X0		30	-	70	\%	External clock
Input clock rising/falling time	$\begin{array}{\|l\|l} \hline \text { tcr } \\ \text { tco } \end{array}$			-	-	10	ns	External clock

* : duty = Pwh/thcyL
- X0 and X1 timing and conditions

- Clock conditions

When a crystal or ceramic resonator is used

When an external clock in use

MB89800 Series

(4) Instruction Cycle

$\left(\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$					
Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Minimum execution time (Instruction cycle)	tinst	4/Fc	64/Fc	$\mu \mathrm{s}$	64/Fc, 16/Fc, 8/Fc, 4/Fc

(5) Serial I/O Timing

$\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Vlue		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	SCK	Internal shift clock mode	2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tsoov	SCK, SO		-200	+200	ns	
Valid SI \rightarrow SCK \uparrow	tivs	SI, SCK		0.5 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		0.5 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tsHsL	SCK	External shift clock mode	tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsısh			tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivs	SI, SCK		0.5 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		0.5 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	

*: For information on tinst, see "(4) Instruction Cycle".
(6) UART Timing
$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Vlue		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	SCK	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{S}$	
SCK $\downarrow \rightarrow$ SO time	tsıov	SCK, SO		-200	+200	ns	
Valid SI \rightarrow SCK \uparrow	tivs ${ }^{\text {l }}$	SI, SCK		0.5 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		0.5 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tshsL	SCK	External shift clock mode	tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	ts.sh			tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		0.5 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		0.5 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	

[^0]- Internal shift clock mode

- External shift clock mode

MB89800 Series

(7) Peripheral Input Timing

$$
\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Condition	Vlue		Unit	Remarks
				Min	Max		
Peripheral input "H" level pulse width	tıuн	PWC/INT1 INTO	-	$2 \mathrm{tinst}^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "L" level pulse width	trime			2 tinst *	-	$\mu \mathrm{s}$	

*: For information on tinst, see "(4) Instruction Cycle".

MB89800 Series

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage

((3) "H" Level Input Voltage/ "L" Level Input Votage (CMOS Input)

(2) "H" Level Output Voltage

(4) "H" Level Input Voltage / "L" Level Input Voltage (CMOS Hysterisis Input)

MB89800 Series

(5) Power Supply Current (External Clock)

(6) Pull-up Resistor Value

MB89800 Series

- MASK OPTIONS

No	Part number	MB89803/805	MB89P808, MB89PV800
	Method of specification	Mask Option	Fixed
1	$\begin{aligned} & \text { Pull-up resistors } \\ & \text { P20 to P25, P30 to P33, P40 to P45 } \end{aligned}$	Selectable by pin	No
2	Power-on reset With power-on reset Without power-on reset	Selectable	With power-on reset
3	Oscillation stabilization time ${ }^{* 1}$ Approx. $2^{17 / F c}$ (Approx. 13.1 ms) Approx. $2{ }^{13} / \mathrm{Fc}$ (Approx. 0.81 ms)	Selectable	$2^{17 / F c}$
4	Reset pin output With reset output Without reset output	Selectable	With reset output
5	Segment output switching 70 segments : No port selection 69 segments : Selection of P17 68 segments : Selection of P17 to P16 66 segments : Selection of P17 to P14 62 segments : Selection of P17 to P10 54 segments : Selection of P17 to P10, P07 to P00	Selectable*2	Selectable*3

*1 : The oscillation settling time is generated by dividing the oscillation clock frequency. Since the oscillation period is not stable immediately after oscillation has been started, therefore, the oscillation settling time in the above list should be regarded as a reference.
*2 : Port selection must be same setting of the segment output selection register of LCD controller.
*3 : Note that, when ports are set, the input voltage value for the port pins are different from those for mask ROM products.
Ports are set by the register setting of the segment output selection register of LCD controller.

ORDERING INFORMATION

Part Number	Package	Remarks
MB89803PF	$\begin{array}{c}\text { 100-pin Plastic QFP } \\ \text { (FPT-100P-M06) }\end{array}$	
MB89805PF	100-pin Plastic LQFP	
MB89P808PF	(FPT-100P-M05)	

MB89800 Series

PACKAGE DIMENSIONS

MB89800 Series

© 2000 FUJITSU LIMITED F100008-3C-3
(Continued)

MB89800 Series

(Continued)

[^1]
MB89800 Series

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0112
© FUJITSU LIMITED Printed in Japan

[^0]: *: For information on tinst, see "(4) Instruction Cycle".

[^1]: © 1994 FUJTSU LIMTED M100001SC-1-2

